
LETTERS TO THE EDITOR
The Number of Markers in the
HapMap Project: Some Notes
on Chi-Square and Exact Tests
for Hardy-Weinberg Equilibrium

To the Editor: Pearson’s chi-square test was, until recently,

the most widely used procedure for assessing Hardy-Wein-

berg equilibrium (HWE) in random samples of unrelated

individuals.1–3 Over the last few years, however, Haldane’s

exact test for HWE has gained popularity. Procedures for

testing HWE have been extensively investigated.4–9

Bayesian and other alternatives for the classical tests have

also been proposed.10–13

A recent study14 compared type 1 error rates for the chi-

square test with those of Haldane’s exact test, and it re-

ported above nominal type 1 error rates for the chi-square

test and therefore recommended the exact test in all situa-

tions. However, in the comparison,14 Yates’ continuity

correction15,16 had apparently not been applied. In statis-

tics, the continuity correction is widely accepted as a device

for improving the accuracy of the results when working

with discrete variables.17

The p value in an exact test is usually computed as the

sum of the probabilities of all samples that are as extreme

or more extreme than the current one.14 An alternative

approach is to define the p value as twice the p value of

a one-sided test. Because of the nonsymmetrical nature

of the Levene-Haldane distribution of the number of

heterozygotes given the allele frequency, the two defini-

tions give different results. Yates16 advocated the use of

a doubled one-tail probability as the p value for Fisher’s

exact test.

In the light of these remarks, a new comparison of the

type 1 error rates for chi-square and exact procedures is

needed, in which we consider the continuity correction

and both definitions of the p value in an exact test. We

briefly summarize both tests and compare their type 1 error

rates below. The practical implications of using the various

procedures are illustrated with HapMap data.18

The Pearson chi-square statistic for a test for HWE is

given by:

X2
c ¼

X3

i¼1

ð jni � ei j � cÞ2

ei

,

in which the ni represents one of the three genotypic

counts (nAA, nAB, and nBB) and ei the respective expected

value under HWE. This is a test for the goodness of fit of

a multinomial distribution. Parameter c represents the

continuity correction. Setting c ¼ 0 gives the ordinary

chi-square statistic, and setting c¼1/2 gives the corrected
The Ame
chi-square statistic. The p value of the test is obtained by

comparing the chi-square statistic with a chi-square distri-

bution with one degree of freedom.

The exact test for HWE19–21 uses the conditional distri-

bution of the number of heterozygotes, NAB, given the

allele count NA, and is given by

PðNAB ¼ nAB jNA ¼ nAÞ

¼ n!nA!nB!2nAB

ð2nÞ!nAB!
�

1
2
ðnA � nABÞ

�
!1
2
ððnB � nABÞÞ!

,

in which nA and nB refer to the sample counts of A and

B alleles. We will refer to this distribution as the Levene-

Haldane distribution. Geneticists usually wish to perform

a two-sided test, because there is no a priori reason to

suppose that a SNP deviating from HWE will show a lack

or an excess of heterozygotes. If there are reasons to expect

a lack (e.g., inbreeding) or an excess (e.g., overdominance)

then a one-sided test is needed. The p value of the exact

test is usually calculated as the sum of the probabilities of

all possible samples as extreme or more extreme than the

observed sample, given the allele count of the observed

sample. We refer to this p value as the SELOME p value

(Sum Equally Likely Or More Extreme). An alternative is to

define the p value as twice the one-sided tail area, and we

will call this p value the DOST p value (Double One-Sided

Tail). If the observed number of heterozygotes is below

that expected under HWE, the DOST p value is twice the

sum of the probabilities of observing the number of hetero-

zygotes in the sample or less. If it is above that expected,

then the p value is twice the sum of the probabilities of

observing the number of heterozygotes in the sample or

more. We argue that DOST p values are the most sensible

p values, and we motivate this with the following example.

If we have a sample of n ¼ 100 individuals, and if there

are 93 copies of the minor allele, then the corresponding

Levene-Haldane distribution of NABjNA, given in the left

panel of Figure 1, is a virtually symmetric distribution

with expectation 50.005. Very low and very high heterozy-

gote frequencies both constitute evidence against HWE.

Because of the near-symmetric nature of the distribution

in this case, it should be evident that observing 61 hetero-

zygotes in a sample constitutes virtually as much evidence

against HWE as observing 39 heterozygotes. Observing 61

heterozygotes or more has a probability of 0.021670, and

observing 39 or fewer heterozygotes has nearly the same

probability, 0.021674 (Table 1). Suppose we observed 61

heterozygotes. If we wish to perform a two-sided test, the

obvious DOST p value is 2 3 0.021670 ¼ 0.04334. When

we use the SELOME rule, the probability of observing a sample

as extreme as 61 heterozygotes or more extreme is 0.04334,

but the probability of observing a sample as extreme as

39 heterozygotes is different: 0.029243. For a symmetrical
rican Journal of Human Genetics 86, 813–823, May 14, 2010 813
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Figure 1. Levene-Haldane Distribution of the Number of
Heterozygotes for a Given Allele Count without and with Normal
Approximation
Left panel: Levene-Haldane distribution for n ¼ 100, nA ¼ 93.
Right panel: Levene-Haldane distribution with normal approxi-
mation.

Table 1. Sample Probabilities and p Values

nAA nAB nBB P(NABjNA) P(NAB R nAB) P(NAB % nAB) pselome pdost

« « « « « « « «

35 23 42 0.000000 1.000000 0.000000 0.000000 0.000000

34 25 41 0.000000 1.000000 0.000000 0.000001 0.000001

33 27 40 0.000003 1.000000 0.000003 0.000006 0.000007

32 29 39 0.000019 0.999997 0.000022 0.000044 0.000045

31 31 38 0.000102 0.999978 0.000124 0.000245 0.000249

30 33 37 0.000455 0.999876 0.000579 0.001148 0.001158

29 35 36 0.001697 0.999421 0.002277 0.004532 0.004553

28 37 35 0.005322 0.997723 0.007598 0.015168 0.015196

27 39 34 0.014076 0.992402 0.021674 0.029243 0.043348

26 41 33 0.031516 0.978326 0.053190 0.074861 0.106380

25 43 32 0.059891 0.946810 0.113081 0.166375 0.226163

24 45 31 0.096794 0.886919 0.209875 0.323289 0.419751

23 47 30 0.133237 0.790125 0.343113 0.553643 0.686225

22 49 29 0.156350 0.656887 0.499462 0.843528 0.998925

21 51 28 0.156472 0.500538 0.655935 1.000000 1.000000

20 53 27 0.133535 0.344065 0.789470 0.687178 0.688131

19 55 26 0.097117 0.210530 0.886586 0.420405 0.421060

18 57 25 0.060120 0.113414 0.946706 0.226495 0.226827

17 59 24 0.031623 0.053294 0.978330 0.106484 0.106588

16 61 23 0.014101 0.021670 0.992431 0.043344 0.043341

15 63 22 0.005314 0.007569 0.997745 0.009846 0.015139

14 65 21 0.001686 0.002255 0.999431 0.002835 0.004511

13 67 20 0.000448 0.000569 0.999879 0.000693 0.001138

12 69 19 0.000099 0.000121 0.999979 0.000143 0.000242

11 71 18 0.000018 0.000021 0.999997 0.000025 0.000043

10 73 17 0.000003 0.000003 1.000000 0.000004 0.000006

9 75 16 0.000000 0.000000 1.000000 0.000000 0.000001

8 77 15 0.000000 0.000000 1.000000 0.000000 0.000000

« « « « « « « «

All possible samples for n ¼ 100, nA ¼ 93. The table shows the probabilities of
observing the sample P(NABjNA), cumulative probabilities, and the SELOME and
DOST p values of an exact test for each possible sample. Bold entries indicate
probabilities that are referred to in the text.
distribution, this difference seems absurd. The reason for

this difference is that the probability of P(NAB ¼ 61jNA ¼
93) ¼ 0.014101 is omitted in the calculation of the latter

p value, because it is slightly larger than P(NAB ¼ 39jNA ¼
93) ¼ 0.014076 (Table 1). On common-sense grounds,

the practice of summing probabilities ‘‘as extreme or

more extreme as those observed’’ seems mistaken. This is

further exemplified by approximating the Levene-Haldane

distribution with a normal distribution, as is done in the

right panel of Figure 1. Under the approximating normal

curve, the evidence against a null value of 50.005 is

evidently twice the probability of exceeding 61, and this

equals twice the probability of observing 39 or less. In prac-

tice, the discrete Levene-Haldane distribution is more

asymmetric than in the example above, but it can often

be well approximated by a normal curve. It is markedly

asymmetric for extreme allele frequencies, but it can

then be approximated by a normal curve after proper

transformation. In short, doubling the one-sided tail area

seems a more adequate way to compute the p value in Hal-

dane’s exact test and is much more in line with statistical

procedures for continuous variables, as well as with the

classical chi-square test, the latter also being essentially

a two-sided test when considered as the square of an

N(0, 1) variate. Table 1 also shows that SELOME p values are

generally smaller than DOST p values in both tails and there-

fore more easily lead to rejection of HWE.

We compared the type 1 error rates of chi-square tests

and exact tests with both types of p values. Type 1 error

rates can be computed exactly by summing the probabili-
814 The American Journal of Human Genetics 86, 813–823, May 14,
ties of all genotypic compositions that pertain to the rejec-

tion region. We computed rejection rates for the same

combinations of parameters used previously,14 with 100

or 1000 individuals and three significance levels (0.05,

0.01, and 0.001). Figure 2 shows the error rates for the

exact test with DOST p values, the chi-square test, and the

chi-square test with continuity correction. DOST p values

in fact form the natural choice, because the tests being

compared are now both actually two-tailed.

Figure 2 shows the inflated type 1 error rates for the ordi-

nary chi-square test (blue) in comparison with the exact
2010
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Figure 2. Type 1 Error Rates as a Function of Sample Size and a for Different Statistical Tests
Type 1 error rates for different sample sizes (100, 1000) and significance levels (0.05, 0.01, and 0.001) for the exact test (red), the chi-
square test (blue), and the chi-square test with continuity correction (green).
test reported previously.14 However, the graph also shows

that the continuity correction (green) effectively reduces

this inflation, bringing the chi-square test into very close

agreement with the exact test. The better agreement of

the corrected chi-square test with the exact test has been

noted before with numerical examples.22

The chi-square test with correction has highly inflated

rates (100%) for very small minor allele counts. This is due

to an edge effect of the continuity correction.23 This edge

effect is easily avoided by using a cutoff for the continuity

correction for low minor allele frequencies, as was done in

Figure 2. The test with correction has a rejection rate that

is mostly below the nominal level for a¼0.05 or 0.01. Often

the test with correction is the closest to the nominal level.

Results of HWE tests are often poorly reported in association

studies.2 We add that it is typically not reported whether

a continuity correction has been applied or not.

Figure 3 compares the error rates of the exact test for

both definitions of the p value. Both tests have a rejection
The Ame
rate that is always below the nominal level. The SELOME rates

are closer to the nominal level and are larger than or equal

to the DOST rates. When the distribution of the number of

heterozygotes is asymmetric, the exact test that uses the

SELOME p values is essentially a one-sided test, because all

probabilities that contribute to the p value are in one tail

of the distribution only. Evidently a one-tailed test has,

as Figure 3 shows, better power, but this gain in power is

irrelevant if one really needs a two-sided test. We therefore

recommend the use of DOST p values in the exact test for

HWE.

We use a HapMap database18 from chromosome 1 to

illustrate the effects on marker admission of the choices

made in chi-square and exact tests. The HapMap project

currently uses the exact test for HWE with criterion

p > 0.001 as a filter for the inclusion of a SNP in the data-

base. This is based on the idea that strong deviations

from HWE may be the result of genotyping error. Viola-

tion of HWE may, however, be due to many alternative
rican Journal of Human Genetics 86, 813–823, May 14, 2010 815
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Figure 3. DOST and SELOME Type 1 Error Rates as a Function of Sample Size and a

Type 1 error rates for different sample sizes (100, 1000) and significance levels (0.05, 0.01, and 0.001) for exact tests with SELOME p values
(purple) and DOST p values (red).
explanations, such as selection, nonrandom mating, pop-

ulation substructure, and, not in the least, disease associa-

tion.1,24 Several scholars25–27 have therefore argued that

HWE tests should be performed but not used as a criterion

for excluding markers prior to association study. We used

the Han Chinese sample from Beijing (CHB), consisting of

45 unrelated individuals (phase II, NCBI build 35). This

database contains 529,081 redundant, unfiltered markers.

The database has three additional duplicate individuals,

and many submitted SNPs are repeated. Of each repeated

SNP, we selected the one which had the fewest missing

values. Next, SNPs were filtered according to HapMap

criteria,18,28,29 by eliminating SNPs that had more than

one inconsistency over the three duplicates and by elimi-

nating SNPs with more than 20% missing values. After

filtering, the database consisted of 45 individuals typed

for 337,746 SNPs. Of these, 42% were monomorphic,

and 16.8% of the polymorphic SNPs had a minor allele

frequency below 0.05. We analyzed this filtered database
816 The American Journal of Human Genetics 86, 813–823, May 14,
by using the four different tests for HWE described above.

We used the R package30 HardyWeinberg (version 1.4) for

the computation of all test results. Rejection rates for the

different tests are given in Table 2.

Table 2 shows that DOST p values have the lowest rejec-

tion rate and form the most conservative approach to

testing HWE. The ordinary chi-square test has the highest

rejection rates, followed by exact SELOME and corrected chi-

square. When the criterion for inclusion of a SNP is

changed from SELOME to DOST p values, an additional

amount of 0.73% of the SNPs would be admitted at the

5% level, or 0.1% at the 0.1% level. These percentages

look small, but genome-wide they correspond to a large

amount of markers. With 3.1 million admitted SNPs

genome-wide18 this corresponds roughly to minimally

22,630 additional SNPs admitted at the 5% level or mini-

mally 3100 additional SNPs at the 0.1% level. In practice,

the number of additionally admitted SNPs will be larger,

because the number of unfiltered SNPs in the project is
2010



Table 2. Rejection Rates for HWE Tests

Rejected (%)

HWE Test a ¼ 0.05 a ¼ 0.01 a ¼ 0.001

c2 4.73 2.77 1.87

c2
c (with cutoff) 3.19 2.01 1.40

Exact (DOST) 2.86 1.70 1.20

Exact (SELOME) 3.59 1.90 1.30

Rejection rates for different tests for HWE for a HapMap database of 337,746
SNPs from the CHB population of 45 individuals, for three different levels of a.
well over 3.1 million. We note that the HapMap database

is an empirical database and that the rejection rates in

Table 2 are therefore not expected to coincide with the

theoretical levels of 5%, 1%, or 0.1%, the true number of

markers out of HWE being unknown. We investigated

the ‘‘newly admitted’’ markers in some detail. Figure 4

shows a ternary plot of the newly admitted markers

without missing data (sample size 45). The plot shows

the acceptance regions of the chi-square test with and

without continuity correction and the acceptance regions

of the exact test with the SELOME and the DOST criterion,

with a ¼ 0.001. The zigzag lines for the exact tests connect

samples for which the exact test is just significant. The

newly admitted SNPs cover the whole range of allele

frequencies and are typically around the boundary of the

acceptance region of a corrected chi-square test for HWE.

The exact test using the DOST criterion has the largest accep-

tance region. Note that for some intermediate allele

frequencies, equilibrium is rejected according to a SELOME
AA

AB

BB

Dost
Selome
χ2

χc
2

Figure 4. Ternary Plot of Extra Admitted Markers
Ternary plot of newly admitted markers without missing data. The
black curve represents HWE. Acceptance regions of the chi-square
test with and without correction (green and blue, respectively) and
the exact tests with SELOME p values (purple) and DOST p values (red)
are shown. Green and red dots indicate nonsignificant and signif-
icant SNPs, respectively, for the corrected chi-square test with
a ¼ 0.001.

The Ame
exact test but accepted by a corrected chi-square. The ordi-

nary chi-square test has the smallest acceptance region.

Constructing reliable SNP assays in the laboratory is

expensive and time consuming. We have no sound statis-

tical reasons to reject HWE for SNPs that have a significant

SELOME p value but a nonsignificant DOST p value. The logical

consequence is to admit these markers to the HapMap

project. This will increase the genomic coverage of the

project, and, after all, these markers may be associated

with disease.
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Response to Graffelman:
Tests of Hardy-Weinberg
Equilibrium
To the Editor: Testing for Hardy-Weinberg equilibrium

(HWE) is perhaps the most common quality-control proce-

dure in all of human genetics. Although there are many

potential explanations for departures from HWE, the

prototypical causes of departure from HWE are genotyping

error and differential missing-data rates among geno-

types.1 These two are critically important because they

can give rise to false positives in genetic association

studies.2 Standard practice in association studies is to test

for HWE in all samples (or control samples) and to reject

any marker with a p value for HWE < a. For the HapMap

project,3,4 a¼ 0.001, but other studies might elect different

values.

For large samples and common alleles, a convenient

means of calculating these p values is to use a simple c2

test. However, this c2 test requires two simplifying assump-

tions that are never true: (1) that heterozygote counts are
approximately normally distributed and (b) that these

counts are continuous. In a Letter to the Editor, Graffelman

suggests that a continuity correction mitigates problems

associated with the second assumption. In our view, the

best solution to the problems associated with using a c2

test is the use of an exact test. A major impediment to exact

tests is the associated computational burden, but that

burden is greatly diminished with the use of the algorithm

of Wigginton et al.5 for calculating exact probabilities and

test statistics.

Wigginton et al. note that with exact probabilities in

hand, there are four possible tests of HWE. Specifically,

they outline two one-tailed tests (Plow, Phigh) and two

two-tailed tests (PHWE, P2a). They define PHWE as the prob-

ability of observing a genotype configuration at least as

unlikely as that actually observed and P2a as min(1.0, 2Phigh,

2Plow). Wigginton et al. recommend that PHWE should be

used in almost all circumstances and discard P2a as too

conservative (i.e., as producing incorrect probability

values).

PDOST ¼ min(2Phigh, 2Plow), the statistic proposed by

Graffelman, is just an imperfect approximation of P2a.

PDOST often takes values > 1.0 and still produces
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